MTS 507

Max. Marks: 70

Third Semester M.Sc. Degree Examination, December 2018/January 2019 MATHEMATICS Graph Theory Choice Based Credit System – New Syllabus

Time : 3 Hours

- *Note* : 1) Answer **any five full** questions.
 - 2) Answer to **each full** question shall **not** exceed **eight** pages of the answer book. No additional sheets will be provided for answering.
 - 3) Use of scientific calculator is permitted.
- a) Prove that the maximum number of lines among all p point graphs with no triangles is [p²/4].
 - b) If G is connected graph with p > 3 points, then show that the intersection number w(G) = q if and only if G has no triangles.
 - c) Suppose G_1 and G_2 are (p_1, q_1) and (p_2, q_2) graphs respectively. Then show that the product graph $G_1 \times G_2$ has $p_1q_2 + p_2q_1$, lines. (4+6+4)
- 2. a) Let G be a connected graph with $p \ge 3$. Then show that the following statements are equivalent :
 - 1) G is a block.
 - 2) Every two points of G lie on a common cycle.
 - 3) Every point and line of G lie on a common cycle.
 - 4) Every two lines of G lie on a common cycle.
 - 5) Given two points and one line of G, there is a path joining the points which contains the line.
 - 6) For every three distinct points of G, there is a path joining any two of them which contains the third.
 - 7) For every three distinct points of G, there is a path joining any two of them which does not contain the third.

- b) Show that a cubic graph has a cut point if and only if it has a bridge.
- c) Let G be a connected graph of order $P \ge 3$ points without bridges. Suppose that for every line e of G each line of G e is a bridge. What is G ? Justify your answer. (8+3+3)
- 3. a) Define a tree. Draw all possible trees of order 6. Further show that a graph G is a tree if and only if every two points of G are connected by a unique path.
 - b) Let G be a graph of order p and size q. If G satisfies any two of the properties
 - 1) G is connected.
 - 2) G is acyclic
 - 3) q = p 1

then show that G is tree.

c) Show that every connected graph has a spanning tree. Further draw all possible spanning trees of G below : (5+5+4)

4. a) If k(G), λ (G) and δ (G) represents point connectivity line connectivity and minimum degree of G respectively. Then show that for every graph G,

 $k(G) \leq \lambda(G) \leq \delta(G).$

- b) If G is a cubic graph then show that $k(G) = \lambda(G)$. Further draw a cubic graph such that $k(G) = \lambda(G) = 1$.
- c) Suppose G is a graph order P and size $q \ge p 1$.

Then show that $k(G) \le \left[\frac{2m}{n}\right]$. (6+6+2)

- 5. a) Prove that a nontrivial connected graph G is Eulerian if and only if every point of G has even degree.
 - b) Let G be a graph of order $p \ge 3$. If deg $v \ge p/2$ for each point v of G, then show that G is Hamiltonian. (7+7)

- 6. a) Show that a graph is planar graph if and only if each of its blocks is planar.
 - b) Show that the Petersen's graph is non-planar.
 - c) Prove that if G is a planar graph of order $p \ge 3$ and size q then $q \le 3p 6$. (6+4+4)
- 7. a) Prove that for every graph G, Chromatic number χ (G) of G is, χ (G) \leq 1 + Δ (G) where Δ (G) is a maximum degree of G.
 - b) What is the chromatic number of a tree ? Further give an example of a planar graph with chromatic number 5.
 - c) Show that for every graph G,

 χ (G) \leq 1 + max { δ (H)}.

where maximum is taken over all induced subgraphs H of G. (4+4+6)

- 8. a) Show that every planar graph is 5-colorable.
 - b) Find the chromatic polynomial f(G, t) of the following graph G :

Fig G : G (6,8)

(7+7)